Step of Proof: p-compose-id
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-compose-id
:
A
,
B
:Type,
f
:(
A
(
B
+ Top)).
f
o p-id() =
f
latex
by (Auto
)
CollapseTHEN ((RepUR ``p-compose p-id can-apply do-apply`` ( 0)
)
CollapseTHEN ((
C
Ext)
CollapseTHEN ((Reduce 0)
CollapseTHEN (Auto
)
)
)
)
latex
C
.
Definitions
Type
,
x
:
A
.
B
(
x
)
,
s
=
t
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
p-id()
,
f
o
g
,
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
f
(
a
)
,
x
.
A
(
x
)
origin